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The linear problem of free vibrations of shells (within the limits of applica - 
bility of classical two-dimensional theory ) is considered. The possibility of 
solving this problem by different approximate methods is discussed, where 
membrane theory and the method of replacing the shell by a plate turn out to 

be the principle methods. Formal estimates for the asymptotic errors of these 
methods are deduced. 

1, Let us start from the linear equations of a thin elastic shell. 
Equilibrium equations 

& (vcJma - jlbamNa) + j2hvm = 0 (1.1) 

-&(j3b,pTab + j4VaNa)- j&w = 0 

vanpa - Nm = 0 h = Pa)" \ 
2/?/L ) 

Strain displacement formulas 

JGhWr. = Vmv,, + j7bn,lw - lIzcm~,cx~~C~vp 

PTILU = V,zYnI - jbclmbnQ, y,,, = T,,,w - jsbmxv, 

6 = - ~I,CWJl~ 

(Cl1 = c22 = 0, Cl2 = -c21 = I/alla2, - (U12)2) 

(1.2) 

(1.3) 

Here a,,, = r,.r, is the metric tensor of the middle surface, b,,, = n. rm,L is 
the curvature tensor, r is the radius-vector of the middle surface, the subscripts on 
the r denote differentiation, cm,, is the discriminant tensor, ‘? m is the symbol of 

the covariant derivative (in the metric of the middle surface ), h is a frequency 
parameter associated with the circular frequency o, p is the shell mass per unit middle 
surface, h is the shell half-thickness, T”‘“, N’“, G”‘” are tensors of the tan - 
gential forces, the transverse forces and moments, emnv Pmn are tensors of the 

tangential and bending strains, ym, 6 are the tensors of the rotation angles relative 
to the tangential axes and the angle of rotation relative to the normal axis, v,, w 

are the tensors of the tangential displacements and the normal displacement, Emnap, 
Fmn” P , C”““P, H”““P are physical tensors which can be expressed in a first ap- 
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It is considered that the shell performs free harmonic vibrations according to the 
law sin ot and that the variable t is extracted. The conditional factors jr, 

127 * * .! 79 (the subscripts have no tensor value here ) are introduced before cer- 
tain membersin (1.1). They will be needed for the subsequent exposition, but must 
as yet be considered equal to one. 

8. Let us intriduce a change in the independent variables by using the equal- 
ities (here and below the superscript on q is an exponent ) 

tm = $yJl, q = h/R f2.1) 

Here 2”’ are the initial parameters of the selected curvilinear coordinate system, 
E” are transformed parameters e R is the characteristic radius of curvature of the 

middle surface, and p is a number dependent on the choice. 
The covariant derivative symbol can be represented in the form 

v,, = +i -t Sm 

where g, is a quantity which does not contain differentiation symbols. Hence, we 
have by virtue of (2.1) 

Y-nz = ~-pv;, v; = $i + VP%?1 (2:2) 

Moreover, let us’introduce the following changes of the desired quantities: 

T mn - _ q 
q-1-S TOmn 

~ Jfmn = 7f2-2Pajfom*, fl” = r12-3Pi~@73f 
12.3) 

u, = pqvg, w == ?L’Q, ym = q-J’& 6 = q%, 

E =zz rl (I+s 0 hl,ll, Pwt 
2P 0 rn,L := rj- pm,,, )I. E ,l‘?f&) 

where q, r, s are as yet arbitrary numbers. 
Performing the changes (2.1) - (2.3) and multiplying the transformed equations 

by powers of q selected in an appropriate manner I we obtain the following system 
inplaceof(l.l)-(1,3) 

(2.4) 
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(the factor + is invoiced in the second of these equalities, where k is still an 
arbitrary number ) , 

8. Consistent values, i. e., values satisfying all three conditions which are 
formulated below, are selected for the numbers p, q, r, 8, k in (2.4). 

CONDITION 1. All the exponents of r should be nonnegative and some of them 
should equal zero. 

If condition 1 is satisfied, then we can put ?l = 0 in (2.4) and can pass 
over to the limit system whose structure depends on the selection of p, fl, r, S, ,k. 

Taking this into account, we formulate the remaining two conditions thus: 
CONDITION 2. The limit system should be formally consistent i. e., the number of 
equations in any set extracted from them should not exceed the number of unknowns 
entering therein. 
CONDITION 3. At least one of the inertial terms should be contained in the limit 
system. 

Four versions of consistent values of p, q, r, s, k, which satisfy these con- 
ditions are given by the following formulas: 
VERSION 1 q=r-_s=k=() (3.1) 

VERSION 2 B= -2p, r = -_P, s ==O, k =O CL 2) 

VERSION 3 q=o, r=1-2p, .1;=2-4~, k=O (3.3) 

VERSION 4 4 = 0, r = 1 - 2p’, k = 4~’ - 2, s = 0 (3.4) 

(The number p remains undetermined here, and it is replaced by p’ in 
version 4 for convenience in the subsequent exposition ) . 
It can be verified that the consistency conditions formulated above are satisfied if the 

values of p and p’ are constrained by the following inequalities: 

0 < p < I!2 for versions 1, 3 
(3.5) 

o<p<1 for version 2 

l/a < pl < 1 for version 4 

4. Let us consider the following to be valid. 
PROPOSITION . A certain set of solutions of ( 1.1) - (1.3 ) , satisfying the appro - 

priate limit system to a known degree of approximation t corresponds to each of the 
consistent values of p, p, P, s, k from the versions constructed in Sect. 3. This pro- 
position will be discussed in greater detail in Sect. 5. 
Let us turn to the limit systems of equations corresponding to the four versions of the 
consistent values of p, q, r, s, k (Sect. 3 ). The scheme to derive these systems is 

the following: 
Values of q, r, S, k for a given version are given by (3.1) - (3.4). Hence, all the 
powers of q in the left sides of (2.4 ) are considered known in each version to the 
accuracy of the number p, for which the inequalities (3.5 ) are valid. Moreover, it 
can be seen that the factor j, in (1.1) - (I.. 3 ) corresponds to each factor of theform 
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rm in (2.4 >. Hence, all the j, can be separated into three groups: the group 
jlL, for which the appropriate powers of q are positive for any allowable values of 

p for pf 1; the group j,,, for which the corresponding powers of 11 are non - 
negative but take on a zero value for at least one of the allowable values of P (or p’ 1; 

the group j,, for which the appropriate powers of 11 are zero. 

The required limit system can evidently be obtained if we set j,, 10 ; 

in, = 1, while retaining the factors j,‘$ by considering them zero when the ap- 
propriate powers of 7 are positive, but equal to one when this exponent is zero. By 
taking such an approach we obtain the following results. 

Solutions which we call quasitransverse integrals correspond to version 
1. For them we must set n, -m= 1,4; r~,~ ::.= 2, 8, 9; rtg = 3, 5, 6, 7 , and the limit 

system can be represented by changing the order of writing the equations as 

-& CaTfna + j&urn = 0, -&tlajga~ - hw = 0 

(here and below, the least power of q which is discarded as compared to one in de- 
riving these limit equations is indicated in the braces 1: 
On the basis of the proposition in Sect. 4, the deduction can hence be made that the 
~~itra~ve~e integrals are determined in an initial approx~ation by dynamical mem- 

brane equations, These latter are valid (in the construction of the quasitransverse inte- 

grals 1 for 0 _-_ P < */s and if E? >. 0 then additional simplifications can be in- 

troduced by setting is = jy = j3 = 0. The most essential is the simplification 

js r= 0. It refers to (4. I>, i.e., to the closed subsystem of differential equations de- 
termining the tensors TrfZ“, zTrrar w. F~,,,, and denotes the possibility of neglecting 
tangential inertial forces in these equations. Less essential are the simplifications jK : 7 

I!, z 0 which refer to (4.2 1, i. e., to formulas permitting determination of the 
direct effects of the remaining unknowns. 
Solutions we call quasitangential integrals correspond to version 2. For them 

nl = 1.4; 112 -= 7; ?&a -7 2;::, 5, 6, 8. 9 and the limit system becomes 

-& \-a7”“U ._.. A[,“’ ::3 (1, ?,,I,, -F l,l~‘ll ‘- _I j7bmn w - -$- c,,,caflVauo (4.3 ) 

mn T := ~l,lMi 8,:: {j, -= ‘1’) 

&-hap P” -.- h,p -- 0 (j4 5 q+-3’ ) (4.4) 
_‘ 



Free vibrations of thin shells 1101 

Again dynamical membrane ewations are obtained in which additional simplifications 
can be introduced under definite circumstances. For p > 0 the additional simpli - 
fication j7 = 0 is allowable. It is quite essential since (4.3 ) are hence transformed 
into a closed system in T”“, L’,, E,,, which agrees formally in structure with the 
dynamical equations of the plane problem of elasticity theory. The remaining unknowns 

w, Ym, 6, Pltanr J!fmn, IV” are determined by direct operations from (4.4 land (4.5 1. 
N o t e. The agreement between (4.3 ) and the equations of the plane problem 

(for j7 = 0 ) is called formal since the metric of the shell middle surface generally 
differs from the “plane ” metric, which can turn out to be important in selecting methods 
of integrating the equations. In particular, the introduction of Airy functions by using 
known formulas becomes invalid, However, this is not essential for the questions under 
discussion here, and for j7 = 0) equations (4.3 1 will henceforth be provisionally called 
the equations of the plane problem. 

Solutions which we call Rayleigh- type integrals correspond to version 3. 
For them rzl ,= 6,9; n2 = 1, 2, 8; n3 = 3, 4, 5, 7, and the limit equations become 

(4.6) 

(4.7 1 

M” zz -$- Gmnafj&,& VaMma - N’” = 0 { j9 = q2-W} 

& (VaTma - j~bam~a) + j2hvm = 0 

-& (b,,Tas + VaNa) - hw = 0 

(4.3 1 

These are equations which determine the pure bending state (in the terminology of Cl] >or 
strain without tension (in the terminology of [21 1. Equations (4.6) for a closed sub - 
system in v, and w; from (4.7) we find ymt 6, !-&i, Mm”, N” by direct 
operations and the second closed subsystem (4.8 ) is obtained for the component of the 
tensor T”” . Equations (4.6) - (4.8 ) are valid for all values of P within the li - 
mits 0 < p < 1/2 and if p > 0, the additional simplifications jl= jz = 
js = 0 are allowable. They are not essential since they refer to terms considered known, 

Solutions we call integrals with high variability correspond to 
version 4 . For them nl = 1, 2, 8, 9; n2 = 3; n3 = 4, 5, 6, 7 and the limit 
equations can be represented thus: 

~(j~b~~T~$ + V&f") - hw = 0, V,Mma- N" = 0 (4.9) 

u,, = v,y,, Yrn = VmW, Mm” = $ G”“+$Lc,B 

{j, = js = qW'} 

V,T"'" = 0 Tm" = EmWE (4.10 1 

& nn = V,v:, + bmnw - 'lac~~c"@V~vp {j, E jz =I q2-2"') 
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For j3 = 1 this system is the dynamical analog of the equations of the approximate 
theory of the states of stress and strain with high variability (only normal inertial for - 
ces are taken into account ). The domain of applicability of this system is determined 
by the inequa~ties ‘ia < p’ < $, and for I/, < p’ the additional simp~fication 

is -= 0 becomes allowable. It is essential since (4.9 ) are consequently separated 
into an independent closed subsystem in Mm”, hr”, pm%, ym, w which agrees formally 
(to the accuracy of the properties of the metric > with the equations of transverse plate 
vibrations . Equations (4.10 > remain to determine the remaining sought tensors Tmn, 
8 mn, v, * The w must be considered a known quantity, and therefore, they are 

inhomogeneous equations of the static plane problem of elasticity theory, 
6. Let us strengthen the proposition used in Sect. 4, and let us consider each 

of the limit systems corresponding to some version of the consistent values of P, Q, P, 
a, k to have solutions in the domain under consideration, in which all the required 

quantities marked with a zero will have the same asymptotic order in (2.3 > , but dif - 

ferentiation with respect to tl, E” cannot result in a substantial growth in these quan- 
tities . Then the transformation (2.1) will be the characteristic scale extension for 
asymptotic approaches but the number p in them agrees in meaning with the in- 

dex of variability. 
The identical factor @ is taken in the right side of the first equation in (2.1) for 
both independent variables. Formally this corresponds to the assumption that the vari- 

ability in both coordinate’ directions is identical. However, we shall consider below 
that such directions may exist in which the variability of the functions desired can be 
substantially smaller, but the corresponding index of variability 0 will have a value 

less than p . Such directions will be called quasistationary, their corresponding in- 

dex of variability 0 is particular, while the index of variability p (in thosecases 
when it is important to distinguish it from 8 ) is general. 

N o t e ‘ ff the ~as~~tionary directions are superposed on the coordinate dir - 
then it must be considered in solving the limit equations that the derivative 

with respect to the corresponding variable will vanish. This will be used for further 

simplifications of certain limit systems. 
The order of the quantities marked with zero in (2.3 ) is identical. This means 

that the asymptotic of all the desired quantities is established by equations (2.3 1: if it 
is considered that the solution is normalized, so that w = 0 (q’), then the 

orders of the remaining quantities are determined by the powers of rj in the right 

sides of (2.3 1, 
Let P or Q denote the set of tensors governing the shell state of stress and strain, 
and if it corresponds to any of the integrals introduced into Sect. 4, then we mark P 
or Q with an additional subscript in parentheses, Then for a broad class of problems 
the state of stress and strain of a vibrating shell can be represented in the form 

where P is the complete state of stress and strain, P, m)r Qcilt are the above- 
mentioned specific states of stress and strain, the former of which is called principal 

while the latter is supplementary. 
Here x is understood to be tie number which must be selected so that the 
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following iteration process would possibly satisfy the boundary conditions. Two out of the 
four boundary conditions of shell theory, which can be selected differently for different 
kinds of vibrations and will be called the principal boundary conditions, must be satis- 
fied in constructing the initial approximation of the principal state of stress and strain 

P(m) l 
Residuals which must be removed in constructing the supplementary state of 

stress and strain Qtn, hence appear in the two remaining boundary conditions (sup- 
plementary ) . Consequently, residuals appear in the principal boundary conditions, 
which must be eliminated in constructing the first correction to PC m) , etc . 

A homogeneous boundary value problem (principal ) is obtained for the initial 
approximation P( mu , during whose solution the eigenvalues l(m) are determined. 
They are the initial approximation of the required frequency parameter. An inhomo- 
geneous boundary value problem (supplem.entary ) is obtained for the initial approxi - 
mation of QcTL) , in which the frequency parameter must be considered fixed (htn) = 

&na,). Henceforth, Pcrn), Qcyl> and h will always be understood as the initial 

approximation to these quantities. 
Let us assume that a general index of variability, denoted by p’ if the state of stress 
and strain is determined by integrals with high variability, and by p in the remaining 
cases, can be indicated separately for each PC,,,) and each QoL). . It is taken into 
account that Pcrn) and Qcn) can have quasistationary directions in some part of the 
domain under consideration. In particular s it is allowed that the shell boundary g for 
a given kind of vibration should turn out to be a quasistationary line. Hence, we denote 

the index of variability of the required state of stress and strain along g by 8 and 
we consider that this number is icientical for Pcm) and QtTL) (itwouldotherwise- 
be impossible to remove the residuals which Pcrnj yields in the supplementary boun- 

dary conditions by using Qtnj ) . 
6. The approach to solving the problems of vibrations theory elucidated insect. 

5 can be called the method of partitioning the state of stress and strain. It is described 
in detail in statics in [ 11. Let us turn to iis applications to dynamics and let us intro- 

duce a classification of possible kinds of vibrations, in passing, but without pretending 

completeness and in agreement with that given in [lo 1. To be specific, we limit our- 

selves to the case when the shell edge g is rigidly clamped and we write the appro- 

priate boundary conditions thus 

Ur = 0, Ua = 0; w = 0, y -;- 0 (on g) 
(6.1) 

(y is the angle of rotation relative to the tangent to the line g). 
QUASITRANSVERSE VIBRATIONS WITH LOW VARIABILITY. 

Vibrations whose total state of stiess is determined by (5.1) for X = 0, 

m = 1, rz = 4,(P,,, is the principal state of stress and strain defined by the quasi- 
transverse integrals, and Qc4) is the supplementary state of stress defined by integrals 
with high variability ) will be designated thus. 
The asymptotics of the quantities in the left sides of the boundary equalities (6.1) is 
determined by (2.3 ) and (3.1) for P(r) and by (2.3 ) and (3.4) for Qc4) . Hence 

(6.1) can be replaced by 
0 , 0 0 

Q(1) = - v -+L'l(4)? Q(1) = - Tp-~~:.y(,) 
(6.2) 

'u(4)O - - w(l)", 
y(4)o = - r)?h' Jql,o 

(on d 
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in which the zeroes have the same value as in (2.3 ) . 
Byusing(Z.3), (3.X),(3.4) we obtain p’ _I- ‘ils for the general index of variability 

p’ for the supplements state of stress and strain from the requirement k(n) z-Z $,,J}. 
The general index of variability p for P(t) is constrained by the inequalities in the 
first line of (3.5). It hence follows that all the powen of ‘1 written explicitly in 
(6.2) are positive and these b~nda~ ~o~ditlo~ can be expressed approximately by 

(6.3 1 

Partition of the complete bandy value problem has been achieved, The principal 
boundary value problem is to integrate the membrane dynamical equations (4.1) with 
the homogeneous tangential boundary conditions exptased by the first two equations in 
(6.3 ) taken into account, The supplementary boundary value problem is to integrate 
the dynamicaf equations of the states of stress with high variability (4.9 ) I and (4.10 ) 
with the inhomogeneons nontangential boundary conditions expressed by the last two 
equalities in (6.3 ) taken into account. The equality p’ = ‘/, holds, whereupon 

js = 1 must be set in (4.9 ) . The right side of the third equation in (6.3 ) should 
be considered known. 
QUASITANGENTIAL VIBRATIONS, Vibrations whose complete state of stress 
and strain is determined by (5.1) for x = 0, m = 2, n == 5 (.PI,, is the principal 
state of stress and strain defined by the ~asi~ng~~al integrals and Q(s) is the sup- 
plementary state of stress and strain defined by integrals with high variability) will be 
designated thus. G(1) = 

, 0 cl 
- Tp +p zQ(Q U,(,) = - (6.4) 

We represent (6.1) in the form 
?Jp’+p u (j>, U1&jO = - W(,,” 

YtsP = - Y’-p X0(Z) on (g> 
by using (2.3 ) and (3.2) for PCs) and (2.3 ) and (3.4 ) for Qc 5j . 
By using (2.3), (3.2) and (3.4)) we obtain from the condition 7Lte1 = htm, that 1) 
is the general index of variabi~~ of Q(5) deter~~ined by the formula 

p’ = l/2 (1 + P) (6.5) 

and since p the general index of variability of P c2) , is subject to the inequal - 
it&s in the second line of (3.5), then the exponents of all the explicitly written down 
powers of 11 in (6.4) are positive, and these equations can also be replaced approx- 
imately by equalities of the form (6.3 ) . This means that a partition of the complete 
boundary value problem has again been achieved: the principal boundary value problem 
is to integrate the membrane dynamical equations (4.3 ) , (4.4 ) with the homogene~s 
tangential boundary conditions expressed by the first two equalities in (6.3 ) taken intO 
account, and the supplementary boundary value problem is to integrate the dynamical 
equations of the states of stress and strain with high variability (4.9) and (4.10 ) with 
~ornog~e~s s non~ngeutial boundary conditions expressed by the last two equalities 
in (6.3 ) taken into account . 
For p > 0 it is necessary to set j, = 0 in (4.3 ) and then, as has already been 
stated in Sect. 4, to ~a~fo~ these equalities into equations of the plane problem. 
Moreover, it follows from (6.5) that p’ > ‘is. This means that it is generally pos- 
sible to set j3 = 0 in (4.9) (for p’ > I/,), which results in their degeneration 
into the equations of transverse plate vibrations. 
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RAYLEIGH -TYPE VIBRATIONS, Theyarewellknownandoccurinashell 
only when the edge supports do not hinder bending of its middle surface, Rigid support 
of the edge does not leave such freedom and it would be fruitless to study vibrations of 
Rayleigh-type by starting from conditions (6.1). Without going into this question in 
detail, let us just note (without proof) that we must set x = i--2p, m = 3, n = 4 
in (5, X ) for Rayleigh- type vibrations (P(s) and @I! are states of stress and strain 
defined by ~yleigha~~ integrals and integrals with high variability, respectively ) , 

QUASITRANSVERSE VIBRATIQNS WITH HIGH VARIABILITY, 
Vibrations for which the principal boundary value problem is to integrate the transverse 
plate vibration equations ( Eqs. (4.9) for ja = 0 ) with nontangential boundary 
conditions taken into account will be understood by this designation, The general in - 
dex of variability p’ for such vibrations should satisfy the inequality P’ > l/z 
since only then can js = 0 be set into (4.9 ). 

Underce~~ a~i~onal condi~ons, which are ex~nded below, it can be considered 
that the complete state of stress is determined only by integrals with high variability. 
Then, (4.9 ) and (4,lO ) can be used in the initial approximation * and since ja = 0 
can be set into (4.9 ) by assumption, then extraction of the principal problem of inte - 
grating the transverse plate vibrations equations with nontangential boundary conditions 
taken into account, will occur. The supplementary problem will hence be to integrate 
inhomogeneous static equations of the plane problem (4.10) and to satisfy the tengential 
boundary conditions. 

It follows from the results in [4] (see appendix to [I] also) that (4.10 ) can have 
such integrals with high variability for which some line, including the edge g, is 
qua&stationary. Hence, the general index of variability p and the particular index 
of va~abili~ 0 in the direction of the edge g should be subjected to the relation- 
ship p=8<p’ for the supplementary problem. But (4.10) have been derived un- 
der the assumption that the general index of variability is identical foi all initial quant- 
ities. Therefore, the domain of applicability of the approximate method described is 
co~trained by the requirement of validity of the discards resulting in (4.10 ). From 
this viewpoint, it is most essential that the term A = ~zr+2p-%gvgm in the first 
equality of (2.4) must be discarded. It is here possible to set s = 0 (s # 0 only 
for Rayleigh-type vibrations). Hence, taking account of the last equality (2.3 ) , we 
can write A = T)2PhL~Om. 

Moreover, by assumption h is determined from the solution of the principal 
problem. Hence, by virtue of (2.3 ) and (3.4) it is necessary to consider that h = 
0 (-rf+'). In addition, we have p = 0. Therefore, A -SO as q---+0 ifand 
only if the fo~owing inequality is satisfied 

%>2p'--1 
(6.6) 

by which the domain of app~cabi~ty of (4.9 ) and (4.10 ) is bcunded for the approxi - 
mate investigation of the quasitransverse vibrations with high variability. 

If the inequality (6.6 ) is violated, then it is again necessary to turn to the mode 
of the solution(5.1) bysetting x = p f P’, m = 6, r~ = 7 by considering that 

P(s) is determined by integrals of (4.9) for js = 0 and Q(r) is determined by the 
quasitangential integrals in which p = 2~’ - 1. ‘The boundary conditions (6.1) 



1106 A. L. Gol’denveizer 

reduce by virtue of (2.3), (3. Z), (3.4) to the form 

Q;tO ~2 - U1(8)Dr zi,(,)* z= - u.$8)o> q6) = - 1pq7)i3r y(o)0 -= (6.7 1 

- PYI(?)* ton RI 

The exponents are positive in the right sides of the last two equations, and this 
means that partition is possible even with conditions (6.6 ) violated. The principal 
problem remains as before * but the supplementary problem will now be to integrate the 
equations of the plane dynamical problem with i~omog~eous tangential bounda~ con- 
ditions taken into acconnt (it can be shown that the dynamical equations of the plane 
problem have integrals for which the edge g is a quasistationary line). 

‘7. Let us discuss the principal boundary value problems clarified in Sect. 6. 
These boundary value problems can be considered well-studied for quasitangential vi - 
brations and for quasitransverse vibrations with high variability. To the accuracy of the 
properties of the metric, they agree with boundary value problems of the theory of 
longitudinal or transverse vibrations of a plate and have nontrivial solutions defining the 
spectrum of their vibrations. It is certainly necessary to keep only such vibrations in 
these latter for which the general indices of variability p and p’ are bounded by 
the inequalities in the second and third lines of (3.5). 

The principal boundary value problem for quasitransverse vibrations with low 
variability is to construct nontrivial solutions of the dynamical membrane theory equa - 
tions which satisfy the tangential boundary conditions, where the tangential inertial 
forces should be taken into account only for p = 0. 

The so-called transition lines fi,, cj,, on which the principal radii of curvature 
RX, R, are related to the frequency parameter ?L by the equalities h = 1 f RI2 

or 3L = 1/ Rs2 play an important part for the dynamical membrane equations. 
In cases when the shell middle surface contains points of the transition lines for 

the values of Iz under consideration, the solutions of the dynamical membrane equa- 
tions will undergo infinite discontinuities on 6, and 8, . Hence, solutions of the 
principal problem for quasitransverse vibrations with low variability cannot exist, i. e. t 
the same situation can hold as in the statical membrane problem for such shells as, say, 
toroids , when the solutions of the membrane equations must be *revised” by using sol - 
utions of the edge-effect-type near the lines of variation in the sign of the middle sur- 
face curvature. In statics, however, the transition lines are the exception associated 
with the geometric specifics of the shell, while in the theory of shell vibrations the 
appearance of a transition line is the rule and due to the value of the frequency. (In 
this sense, the exception in the theory of vibrations holds only in the simplest shells e 
whose principal curvatures are constants 1. 

The procedure for eliminating the d~continuiti~ for shells of revolution is de+ 
cribed in [3, 5- 73, for instance. General co~iderations about transition lines can 
be found in [S 1, 

If the value of FL under consideration is outside the interval 

rnin(-&,&) gA<max(+.+) 
(7.1) 

i. t;, if there are no transition lines on the middle surface, then the principal boundary 
value problem can have nontri~al solutions, They apparently always exist to the right 
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of the Interval (7.1)) but cannot be to the left of (7.1) (for shells of revolution the 
existence conditions for nontrivial solutions of the principal problem have been esta - 

blished in [9 ] for this case ) , 
8. Turning to a discussion of the supplemen~ry problems, let us start with the 

quasitransverse vibrations with low variability. In this case, the principal and supple- 
mentary states of stress are denoted by PC,) and Qt4), and the supplementary boundary 
value problem is to integrate the dynamical equations of the states ofstress with high vari- 

ability under inhomogeneous nontangential boundary conditions. 
The general index of variability of Qt4) is l/s (Sect. 6). It is hence necessary 

to start from (4.9) and (4.10 ) by setting j3 = 1 therein, i. e . , by considering that 

they do not degenerate into the transverse plate vibrations equations. Moreover, the 
particular index of variability along the edge g is identical for PC,) and Qc4) by 
assumption, and should be subject to the inequality 9 < p, while P , the general 
index of variability of PC,) , should be subject to the inequalities in the first line of 

(3.5). From this and from the equality P =L l/s we conclude that the edge g is 

a quasistationary line for Qt4). By using this, local (generally valid only near the 

edge g) equations of the theory of the states of stress and strain of Qto can be con- 
strutted . They are obtained from (4.9 ) and (4.10 ) as a result of additional simplifi - 
cations, based on the fact that the directions of a relatively slow change in the desired 

magnitudes of the state of stress and strain Qt4) are known in advance near the edge 

g . Without going into the details which can be found in [lo 1, let us present the final 
result. If the shell middle surface is referred to an arbitrary orthogonal coordinate sys- 
tem (cc, f5) so that g , would agree with the p- lines, then a system is obtained 
which is the dynamical analog of the approximate equations of the simple edge effect. 
Its solution reduces to integrating the equation 

h2 (8.1) 
3 (1 -v”) Aa ~3~4 

in which ~2 is the coefficient of the first quadratic form and Rs’ is the normal 
radius of curvature of the surface along the p- lines, while j3 must still be con - 
sidered equal to one. If the inequality 

1/R,‘= - h > 0 
(8.2) 

is satisfied everywhere on the edge g , then the solution of the ~pplementa~ boundary 

value problem can be constructed exactly as in statics, by introducing only those inte- 
grals into the considerations, which damp out with distance from g . Conversely, 

if the sign of the inequality (8.2) is reversed at all points of J, then (8.l)i.s known to 

have a solution which oscillated near g without damping, while the arbitrariness 

contained in the damped solutions becomes inadquate for compliance with all the con- 
ditions of the supplementary boundary value problem. In the terminology of [ll ] , vio- 
lation of condition (8.2) means irregularity of the degeneration of the complete boundary 

value problem into the principal boundary value problem (however (8.2 ) is not the suf - 
ficient condition for regularity of the degeneration in the general case ). 

The states of stress and strain p(s) and Q(s) should be constructed for the 

quasitangential vibrations, and the supplementary boundary value problem is, as before, 
to integrate the dynamical equations of the states of stress with high variability under 
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~nhomogene~s non~ngential conditions, Hence, the relationship (6.5) is valid for 

PI . the general index of variability of Qts) , from which it follows that P’ > ‘/z 
generally. Hence, it is necessary to set j3 = 0 in (4.9) and these equalities go over 
into the equations of transverse plate vibrations, while the supplementary boundary va- 
lue problem reduces essentially to the computation of the forced steady-state transverse 
plate vibrations caused by periodically varying edge displacements. This problem has 

generally a (unique) solution, but the exception is the case when the frequencies of the 

qu~i~ng~~l vibrations agree with the eigenvalues of the homogeneous ~pplementary 
boundary value problem or, equivalently , with the frequencies of the quasitransverse 
vibrations with high variability. Such agreement will henceforth be called in t e r n a 1 
resonance. 

The inequality p’ > I-, in whose right side is the general index of variability 

of PO) . follows from (6.5) for all allowable values of p (11 < 1) , This means 
that P’ > 0, i.e., for the supplementary state of stress Q(5j , the edge K, as for 

Qw is a quasistationary line. Therefore, the subsystem (4.9 > near g can addi - 

tionally be simplified and a local governing equation can be deduced. It is evidently 
obtained if we set j:~ = 6 in (8.1). Hence, (8.1) goes over into the static equation 

of the simple edge effect for h = 0 and is=1 * while for h f 0, j:, = 0 it is 
the result of certain simplifications of the transverse plate vibrations equations. Physi - 
tally it is clear that internal resonance is impossible in the first case, while it is in - 

evitable for certain vaZue.s of h in the second. For quasitransverse vibrations with 

low variability, the members in the parentheses in (8.1) are commensurate and it can 
be assumed that internal resonance becomes possible if and only if h exceeds the 

lower bound of the interval (7.1) on a certain section of the edge. 
For quasitransverse vibrations with high variability the supplementary boundary 

value problem reduces to the solution of the statical plane problem of elasticity theory 
upon compliance with condition (6.6 ) and internal resonance is impossible in this case. 
If condition (6.6) is violated, the supplementary problem reduces to the analysis of the 
tangential plate vibrations, which will result in internal resonance for definite values 

of A. 

9 . Let us turn to a discussion of the approximate methods of inv~tigating the 
free shell vibrations by understanding this to be an approximate method to replace the 

solution of the complete problem by the solution of the principal problem l 

The principal boundary value problem for transverse vibrations with low vari- 

ability and for quasitangential vibrations is to integrate the dynamical membrane equa- 
tions ~ and the approximate method to be discussed reduces to the application of mem - 

brane theory to investigate the free shell vibrations. Different additional simplifications 

are allowable in the appropriate equations under known circumstances _ Namely, the 
tangential inertial forces can be discarded for quasitransverse vibrations, and normal 
displacements can be discarded in the expressions for the tangential strain components 

for quasitangential vibrations. There hence results that the membrane theory ( with 
compliance with the tangential boundary conditions ) can be used formally to construct 

quasitransverse vibrations with low variability in the frequency parameter lies outside 
the interval (7.1) and also to construct quasitangential vibrations for any h and any 
variability without emerging from the domain of applicability of two-dimensional 

shell theory. 
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The second approximate method of investigating free shell vibrations is to con- 
struct quasitransverse vibrations with high variability by using the integration of (4.9 ) 
with i3 = 0 and satisfying the nontangential boundary conditions. It can provisionally 
be called the method of replacing the shell by a plate, 

In combination, the two approximate methods, membrane theory and analysis 
of the shell as a plate, enclose a very broad but not exhaustive class of shell vibrations. 
This class does not contain: quasitransverse vibrations with low variability for which 

b is located in the interval (7.1) , quasitransverse vibrations with intermediate vari- 
ability where 4s. (4.9 ) and (4.10) must be the basis of the analysis by considering 
that i3=t l and they do not degenerate into the equation of transverse plate vi - 
brations. 

The methods proposed are not abplicable when internal resonance occurs. This 
phenomenon is possible for quasitangentiar vibrations in any range of variation of 1, 
for quasitransverse vibrations with low variability - for h located to the right of the 
upper bound of the interval (7.1) , and for quasitransverse vibrations with high varia - 
bility , in the case when the inequality (6.6 ) is violated. 

Note. Quasitransverse vibrations with intermediate variability are a relatively 
particular but important form of vibrations. As a rule, they occur with the lowest fre- 
queneies , The intermediate index of variability was obtained as p’ = ‘is in Sect. 4. 
However I it must be kept in mind that the investigation proposed does not pretend to 
be complete. For example ,it does not include vibrations for which the quasistationary di- 
rections pass along asymptotic lines of the middle surface .There results from (10 I that 

p’ = ?, for K < 0 and P’ = If1 for K = 0 for such vibrations ( K is the 
curvature of the middle surface). 

10. Let us discuss the inaccuracies of the approximate methods under consid - 
eration. They are comprised, firstly , of errors due to discarding the supplementary 
state of stress and strain, and secondly, of the errors admitted in the coercion of 
the principal state of stress and strain‘ Let us first estimate the errors of the first kind. 

Bymeansof (2.3), (3, l), (3. Z), (3.4) weobtainestimatesforthequantitiesre- 
lated to thestategof stressandstrain p(r), Pczj, PCs) introduced in Sect. 5 (it is con- 
sidered everywhere that w is commensurate with one > 

%(I) = 0 (r”), % tT1 = 0 (rl-% %, tm = 0 WZP) 
(10.1) 

U,(z) = 0 (q-P), G(Z)(T) = 0 (q--t-2p), a(2) (M) = 0 (q-2") 

Y&it = 0 (V'), G(4) (T) = 0 (q-l), q,, (~~ = 0 (P"') 

(p=1,2) 

Herein the u (T) and a (M) are understood to be stresses due to the tangential 
forces and the moments, respectively. (The approximate formulas for Qc5) which 
are needed below, do not differ from the formulas for Q(4) for arbitrary p’ , but 
it must be recalled that the meaning of p’ for Q(4) and &,) is distinct ) , 

The following comparison formulas in the deformabili~ and stress intensity 
result from (10 . 1) : 

V(4) = 0 Wd E(4) = 0 G,,,) 
(10.2) 

vcG = 0 WV(2,>, f: (5) = 0 (r1+2p-2p’&)) = 0 ($q,,) 
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wherein I/ and 2 are understood to be the absolute values of the asymptotically 
principal displacements and stresses, respectively, and the last equality is converted 
by using (6.5 ) . 

Therefore, p(1) and Q(4) are asymptotically equivalent in both the deformability 
and the stress intensity and, therefore, the membrane analysis of the quasitransverse 

vibrations with low variability results formally in an error on the order of 0 (1). The 
same situation holds for shells with a fixed edge and in statics. The distinction is just 
that in statics Qc4) always damps out with distance from the edge, and this means 
that a membrane analysis far from the line of distortion remains true while thedamping 
of Qt4) will be assured for quasitransverse vibrations with low variability, except 

that the frequency parameter h is on the left of the interval (7.1). 
Note. If Qc4) contains oscillating components, then the membrane analysis 

retains its value as the first stage of the approximate investigation. In this case it should 

be supplemented by the construction of the state of stress and strain Qc4) (this is gen- 
erally a very complex problem, even for solution on a digital computer, but it is solve:, 
in elementary fashion by the method of exponential representation for shells of revo- 

lution , for instance ) . 

For quasitangential vibrations, Qt5) is secondary in both the deformability 

and the stress intensity as compared with P(z) for p > 0. Therefore, the membrane 
analysis for quasitangential vibrations with p > 0 always yields a vanishingly small 

error (as 7l 3 0) , whoseasymptotic order is estimated by means of (10.2) and (6.5 ), 
i. e., leads to better results in dynamics than in statics. 

If the requirement (6.6 ) is violated, then the term P(s) is discarded in (5.1) 
in a computation of the quasitransverse vibrations with high variability by the method 
of replacing the shell by a plate. Taking into account that Pc6) is determined by 
intagrals with high variability and Q(7) by quasitangential integrals, the estimates 

(10.1) can be used by replacing the subscripts (4) and (2) by (6 ) and (7 ) therein, re - 

spectively . Hence 

qp+W(,) = 0 (7l”‘V(,,), r]“+“‘&;, = 0 (r)-i+“p’-pZ@)) (10.3 ) 

The condition of applicability of the method of replacing the shell by a plate is the 
inequality p’ ;> ‘I,. Hence, the exponent for q is positive in the right side of 

the first relation in (10.3 ) . The second relation in (10.3 ) possesses the same property 
since p = 2p’ - 1 (Sect. 6 ) in the case under consideration, and therefore 

-1 + 3p’ - p = pf 

Let us turn to errors in determining the principal state of stress and strain associated 
with the inaccuracies admitted in both the equations and the boundary conditions of the 
principal boundary value problem, 
Estimates of the orders of the components discarded in the equations are written in the 
braces for the appropriate systems. However, integrals with high variability are to be 

constructed and the errors therein will be substantially greater than the relative absolute 
values of the discarded terms. Namely, on the basis of a discussion of this question in 
[12. ] (Ch. 13, Sect. 4). it can be assumed that discarding quantities on the order of 

0 (r”) implies an error on the order of O(qkep) in determining integrals with 
the index of variability p . Hence, by using the inscriptions in the braces in (4.1) , 
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(4.3 1, (4.4) and (4.9 ) , we obtain the following estimates for the error E’: 

E’ = 0 ($-51)), E’ = 0 ($-3P), 8’ = 0 (YjP’) (10.4) 

respectively, for the quasitransverse vibrations with low variability, the quasitangential 

vibrations, and the quasitransverse vibrations with high variability. 

It can be assumed that the error E” associated with the inaccuracies in the boundary 

conditions of the principal boundary value problems have the same orders as the terms 
discarded in the equalities which express these conditions. Hence, we obtain the foll- 

owing estimates by virtue of (6.2), (6.4). (6.5) and (6. ‘7 1: 

e,, = 0 ($W), 8” = 0 (~“*+W)) E” = 0 ($J’+p + +p’) (10.5 1 

(it is taken into account in the first of these that p’ = ‘/z for quasitransverse vib- 

rations with low variability 1. 
Finally, the error in the principal state of stress and strain is determined as the maxi - 

mum of two corresponding estimates (10.4)) (10.5 1. 
In conclusion, let us note that, without going into details, the order of the corrections 

61 of the frequency parameter can be assumed equal to the order of the greatest of 
the absolute values of the members discarded in the equations or the boundary conditions 

of the principal problem. This means that 6h = max(Em, 8”‘) where 

& r,, = 0 (+4P), Ew = 0 (q2-2P), Em = 0 (r2-2P’) 
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